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Conductometric Study of Some Metal Halides
in Glycerol + Water Mixtures
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Electrolytic conductivities of potassium halides, KX (X = CI7, Br—, I7)
have been investigated in 10, 20, and 30 mass% glycerol + H>O mixtures at
298.0, 308.0, and 318.0K. The conductance data have been analyzed by the
Fuoss-conductance—concentration equation in terms of the limiting molar
conductance (A?), the association constant ( K4), and the distance of closest
approach of ion (R). The association constant (K4) tends to increase in the
order: 10 mass% < 20 mass% < 30 mass% glycerol + water mixtures, while
it decreases with temperature. Thermodynamic parameters AH?, AG?, and
AS? are obtained and discussed. Also, Walden products (A7) are reported.
The results have been interpreted in terms of ion—solvent interactions and
structural changes in the mixed solvents.

KEY WORDS: association constant; density; glycerol; limiting conductance;
potassium bromide; potassium chloride; potassium iodide; thermodynamic
parameters AHY, AG®, and AS; Walden product.

1. INTRODUCTION

Transport properties are very useful for the study of ionic solvation. These
properties can give information on the effective size of a moving particle
in solution. These properties are sensitive to strong ion—solvent interac-
tions, which increase the effective size of the ions and also any modifi-
cation in the structure of the solvent [1, 2]. Shehata et al. [3, 4] studied
the electrical conductivities of Ba(NO3); and Sr(NOs); in glycerol + H,O
mixtures to determine the nature of ionic associations and mobility of
ions in this mixed solvent system. In the present study, an attempt has
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been made to ascertain the nature of ion—solvent interactions of potassium
halides (chloride, bromide, and iodide) in glycerol + HyO mixtures using
the conductometric technique. Thermodynamic parameters are also evalu-
ated and discussed.

2. EXPERIMENTAL

Potassium metal salts were of puris or purum grade (Fluka), quoted
as 99.5% pure and were purified as described earlier [5, 6]. Water was
doubly-distilled and then passed through a column containing mixed resin
(anion—cation exchange). Glycerol (G.R.E. Merck, India, >99.5%) was
purified as described earlier [7].

A stock solution for each salt was prepared by mass, and the work-
ing solutions were obtained by mass dilution. The conversion of molality
to molarity was done using the density values [8].

The densities (p) were measured with an Ostwald—Sprengel type pyc-
nometer having a bulb volume of 25cm?® and a capillary with an inter-
nal diameter of about 0.1 cm. The pycnometer was calibrated at 298.0,
308.0, and 318.0 K using doubly distilled water and benzene. The pycnom-
eter with the test solution was equilibrated in a water bath maintained
at +0.005K of the desired temperature by means of a mercury-in-glass
thermoregulator, and the temperature was determined with a calibrated
thermometer and a Muller bridge. The pycnometer was then removed
from the thermostatic bath, properly dried and weighed. The evaporation
losses remained insignificant during the time of actual measurements. The
density values were reproducible to £3 x 1073 g-cm—3. Details have been
described earlier [9-11].

The viscosities were measured by means of a suspended level
Ubbelohde viscometer at the desired temperature (uncertainty of £0.005 K).
The precision of the viscosity measurement was £0.005mPa-s. Details
have been described earlier [12, 13].

Conductance measurements were carried out with a Systonic-306 con-
ductivity bridge using a dip-type cell (cell constant=0.1cm~!) with an
uncertainty of 0.01%. The cell was calibrated by the method of Lind and
co-workers [14] using aqueous potassium chloride solutions. Measurements
were made as described earlier [15].

Several independent solutions were prepared and conductance mea-
surements were performed with each of these to ensure the reproducibility
of the results. Corrections were made for the specific conductance of the
solvent.

The conductance values of 10 mass% glycerol + H,O mixture were
5.08 x 107>, 6.63 x 1075, and 8.18 x 107>S-cm~! at 298.0, 308.0, and
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318.0 K, respectively. The concentrations of measured solutions were in the
range of 6.86 x 1073 to 8.68 x 1072 mol- dm—3.

3. DISCUSSION

Molar conductances (A), densities (p), and molar concentrations (c)
are given in Table I in different solvent mixtures at 298.0, 308.0, and
318.0K. The solvent properties of glycerol + H,O mixtures are given in
Table II. Dielectric constants of the solvent mixture were obtained by
extrapolation of D (dielectric constant) versus W (the mass of glycerol in
the aqueous mixtures) plots; the original values were taken from the work
of Akerlof [16].

The conductance data have been analyzed by the Fuoss-conductance—
concentration equation [17, 18]. For a given set of conductivity values
(cj,Aj, j=1,...,n), three adjustable parameters, the limiting molar con-
ductivity (A”), the association constant (K4), and the distance of closest
approach of ions (R) are derived from the following set of equations:

A=P[A°(1+Rx)+E¢] 1)
P=1—a(l-y) ®)
y=1-Kacy’f? 3)
—In f=Bx/2(1+«R) 4)
B=e*/(DkgT) (5)
Ka=Kr/(1—a)=Kr(1+Kjs) (6)

where Rx is the relaxation field effect, Ep is the electrophoretic counter-
current, K~! is the radius of the ion atmosphere, D is the dielectric con-
stant of the solvent, e is the electron charge, kg is the Boltzmann constant,
y is the fraction of solute present as an unpaired ion, ¢ is the molarity
of the solution, f is the activity coefficient, T is the absolute temperature,
and B is twice the Bjerrum distance.

The computations were performed using a program suggested by
Fuoss. The initial A? values for the iteration procedure were obtained
from Shedlovsky extrapolation of the data. Input for the program is the
set (¢;,Aj; j=1,....,n),n,D,n, T, initial values of A%, and an instruction
to cover a preselected range of R values.

In practice, calculations are performed by finding the values of A
and o which minimize the standard deviation:

2= [Aj(caled) — A j(obsd)]*/(n —2) (7)
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Table II. Values of Density, Viscosity, and Dielectric Constant of Glycerol (1) + Water (2)
Mixtures at Various Temperatures

Glycerol

(mass%o) Property 298.0K 308.0K 318.0K

10 Density (g-cm™3) 1.02001¢ (1.020%)  1.00742% (1.007°)  0.99403¢
Viscosity (mPa-s) 1.15303 (1.153%)  0.91104“ (0.911%)  0.67004¢
Dielectric constant  75.70° 72.19 68.56°

20 Density (g-cm™3) 1.04300¢ 1.03801¢ 1.033044
Viscosity (mPa-s) 1.53423° 1.20872¢ 0.79601¢
Dielectric constant ~ 72.0¢ 69.36¢ 66.73=

30 Density (g-cm™3) 1.07003% (1.070°)  1.05722% (1.057%)  1.03926¢
Viscosity (mPa-s) 2.15700" 1.6370% 1.14250¢
Dielectric constant  70.00° 66.53" 63.120

¢ Calculated values.
5 From Refs. [16, 24].

for a sequence of R values and then plotting § gainst R; the best-fit R cor-
responds to the minimum of the § — R versus R curve. So, approximate
runs are made over a fairly wide range of R values using 0.1 increments
to locate the minimum, but no significant minima were found in the § — R
curves for all the salts studied here; thus, R values are assumed to be R=
a+d, where a is the sum of the crystallographic radii of the ions and d
is the average distance corresponding to the side of a cell occupied by a
solvent molecule. The distance d is given by
d((A))=1.183(M/p)'? (8)
where M is the molar mass of the solvent and p is its density. For mixed
solvents, M 1is replaced by the mole fraction average molar mass (Myy)
which is given by
May =M M> /(W My + W M>) ©)
where W) is the mass fraction of the first component of molar mass M.
The values of A?, K5, and R obtained by this procedure are reported in
Table III.
Inspection of the data in Table III shows that the values of A? of
all salts decrease as the concentration of glycerol in the aqueous mix-
tures increases. But as the temperature increases, A’ values increase for
all glycerol + H,O mixtures. The trends in A can be discussed through
another characteristic function called the Walden product, A%;. Although
A decreases as the concentration of glycerol increases, A’y (Table IV)
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Table III. Derived Conductivity Parameters for Potassium Salts in Glycerol (1) + H,O(2)
from 298.0 to 318.0K

Glycerol (mass%) T(K) A° (Semimol™!) Ka (dm=3-mol”') R (A) &

KCl1
298.0 105.73 (£ 0.10) 5.48 6.31 0.10
10 308.0 125.01 (£ 0.40) 4.47 6.32 0.40
318.0 147.09 (£ 0.19) 3.28 6.33 0.19
298.0 84.04 (£ (0.11) 7.17 6.38 0.11
20 308.0 101.26 (& 0.19) 5.73 6.39 0.19
318.0 125.81 (£ 0.21) 5.00 6.40 0.21
298.0 60.20 (£ 0.19) 8.48 6.46 0.19
30 308.0 76.40 (£ 0.06) 7.31 6.48 0.06
318.0 91.99 (£ 0.20) 6.33 6.50 0.20

KBr
298.0 112.77 (£ 0.13) 4.35 6.45 0.13
10 308.0 134.46 (£ 0.09) 3.37 6.46 0.09
318.0 154.11 (£ 0.06) 2.93 6.47 0.06
298.0 95.51 (£ 0.12) 5.48 6.52 0.12
20 308.0 10597 (£ 0.19) 4.39 6.53 0.19
318.0 133.30 (£ 0.17) 3.89 6.54 0.17
298.0 70.78 (£ 0.05) 6.24 6.60 0.05
30 308.0 88.26 (£ 0.12) 5.58 6.62 0.12
318.0 10545 (£ 0.11) 4.79 6.64 0.11

KI
298.0 116.81 (£ 0.12) 3.77 6.66 0.12
10 308.0 135.60 (£ 0.12) 3.10 6.67 0.12
318.0 156.69 (£ 0.15) 2.63 6.68 0.15
298.0 99.73 (£ 0.07) 4.79 6.73 0.07
20 308.0 116.83 (£ 0.08) 3.83 6.74 0.08
318.0 139.91 (£ 0.12) 3.50 6.75 0.12
298.0 77.70 (£ 0.04) 5.40 6.81 0.04
30 308.0 95.05 (£ 0.14) 4.89 6.83 0.14
318.0 109.75 (£ 0.09) 4.26 6.85 0.09

increases due to the increase of the viscosity (1). A%y decreases with an
increase in temperature at 298.0, 308.0, and 318.0K for all glycerol + H,O
mixtures. The decrease in A%y is small. The decrease in A’y with temper-
ature, which is common in aqueous solutions [19], can probably be inter-
preted as a thermal expansion of the solvent sheath (which envelops an
ion and moves by ion-solvent interactions, i.e., the expansion of a solvated
ion) because of the activation of solvent molecules forming the sheath.
From Table ITI, we see that A of potassium salts of common cations
follow the sequence: Cl~ < Br~ <I~. Furthermore, A° of the studied elec-
trolyte is enhanced in the following order: KI > KBr > KCI. The sizes
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Table IV. Values of Activation Energy (E) and Walden Products (A%y) of Potassium Salts in
Glycerol (1) + H,O (2) Mixtures at Various Temperatures

A% x 10* (S-cm?-mol~!.Pa-s)

Glycerol (mass%o) E (kJ-mol™) 298.0 308.0 318.0
KCl1

10 13.00 121.91 113.89 98.56

20 15.74 128.94 122.39 100.15

30 16.96 129.46 125.07 105.10
KBr

10 12.22 130.03 122.50 103.26

20 13.43 146.53 128.09 106.11

30 15.77 152.67 144.48 120.48
KI

10 11.42 134.69 123.54 104.99

20 13.38 153.01 141.21 111.37

30 13.80 167.60 155.60 125.39

of these anions as they exist in solution follow the order: ClI~ > Br~ >
I~. This shows that potassium halides with Cl~ are the most solvated and
those with I~ are the least solvated one in all concentrations of glycerol +
H,O mixtures. A similar result [6] was obtained in conductance studies of
alkali metal chlorides and bromides in THF + water mixtures at 298.15K.

There are marked characteristic behaviors in the K5 values. K5 gen-
erally decreases as the temperature is increased; the thermal motion prob-
ably destroys the solvent structure. However, K for all salts increases as
the concentration of glycerol increases in the mixture.

Since the conductance of an ion depends on the rate of movement, it
seems reasonable to treat the conductance in a manner analogous to that
employed for other processes taking place at a definite rate which increases
with temperature [20]. On this basis it would be possible to write:

AV=A e “E/RT o

In A= In A—E/RT (10)

where A is the frequency factor, R is the universal gas constant, and E is
the Arrhenius activation energy of transport processes.

Thus, from the plot of log A? versus 1/7 for the potassium salts for
all glycerol + H,O mixtures, E values have been computed from the slope
[21] and are recorded in Table IV.
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Table V. Thermodynamic Functions for Association of Potassium Salts in Glycerol (1) +
H,O (2) Mixtures at Various Temperatures

Glycerol
(mass%o) T (K) —AHY (kJ-mol™1) —AGY (kJ-mol™!) —ASY (- K mol™ 1)

KCl
298.0 20.04 421 53.12
10 308.0 20.04 3.83 52.63
318.0 20.04 3.14 53.14
298.0 14.21 4.88 31.31
20 308.0 14.21 4.47 31.62
318.0 14.21 4.26 31.28
298.0 11.42 5.30 20.54
30 308.0 11.42 5.09 20.55
318.0 11.42 4.88 20.57

KBr
298.0 15.41 3.64 39.50
10 308.0 15.41 3.11 39.94
318.0 15.41 2.84 39.53
298.0 12.94 421 29.30
20 308.0 12.94 3.79 29.71
318.0 12.94 3.59 29.40
298.0 10.22 4.54 19.06
30 308.0 10.22 4.40 19.00
318.0 10.22 4.14 19.12

KI
298.0 14.19 3.29 36.58
10 308.0 14.19 2.90 36.66
318.0 14.19 2.56 36.57
298.0 12.66 3.88 29.46
20 308.0 12.66 3.44 29.94
318.0 12.66 3.31 29.40
298.0 9.43 4.18 17.62
30 308.0 9.43 4.06 17.44
318.0 9.43 3.83 17.61

A perusal of Table IV shows that E increases as the concentration of
glycerol increases in the mixture. It is well accepted that the activation of
electrolytic conductance is almost identical with that for the viscous flow
of the solvent; the constancy of E means that the positive temperature
coefficient of ion conductance is roughly equal to the negative temperature
coefficient of viscosity [22].

The free energy charge (AG?) for association is calculated from the
relation [23]:
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AG’=—RT In K4 (11)

The heat of association (AH") is obtained by studying the association
constant (K4) over a range of temperature by means of Van’t Hoff’s iso-
chore, where log K4 values are plotted against 1/7 giving a straight line
with slope —AH?/R. The negative AH® values obtained are found to
decrease systematically with the concentration of glycerol in the mixture.

The entropy change (AS?) is calculated from the Gibbs—Helmholtz
equation:

AG'=AH"—TAS® (12)

The values of these thermodynamic functions are given in Table V.

If we consider that from a rudimentary standpoint the ion pair is
formed with only the action of the Coulombic force in a continuum
medium, the values of AH? nd AS? of the ion-pair formation will be neg-
ative. Therefore, all the experimental values of AH? and AS® are negative
for all potassium salts studied here (Table V). The negative sign of AH®
means that the association processes are exothermic.
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